On a Conjectured Formula for Quiver Varieties
نویسنده
چکیده
In A.S. Buch and W. Fulton [Invent. Math. 135 (1999), 665–687] a formula for the cohomology class of a quiver variety is proved. This formula writes the cohomology class of a quiver variety as a linear combination of products of Schur polynomials. In the same paper it is conjectured that all of the coefficients in this linear combination are non-negative, and given by a generalized Littlewood-Richardson rule, which states that the coefficients count certain sequences of tableaux called factor sequences. In this paper I prove some special cases of this conjecture. I also prove that the general conjecture follows from a stronger but simpler statement, for which substantial computer evidence has been obtained. Finally I will prove a useful criterion for recognizing factor sequences.
منابع مشابه
Kac conjecture from Nakajima quiver varieties
We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the Weyl-Kac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a a certain weight in the corresponding Kac-Moody algebra, whic...
متن کاملKac’s conjecture from Nakajima quiver varieties
We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the WeylKac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a certain weight in the corresponding Kac-Moody algebra, which w...
متن کاملt–ANALOGS OF q–CHARACTERS OF QUANTUM AFFINE ALGEBRAS OF TYPE
We compute t–analogs of q–characters of all l–fundamental representations of the quantum affine algebras of type E (1) 6 , E (1) 7 , E (1) 8 by a supercomputer. In particular, we prove the fermionic formula for Kirillov-Reshetikhin modules conjectured by Hatayama et al. [6] for these classes of representations. We also give explicitly the monomial realization of the crystal of the corresponding...
متن کاملArithmetic Harmonic Analysis on Character and Quiver Varieties
We propose a general conjecture for the mixed Hodge polynomial of the generic character varieties of representations of the fundamental group of a Riemann surface of genus g to GLn.C/ with fixed generic semisimple conjugacy classes at k punctures. This conjecture generalizes the Cauchy identity for Macdonald polynomials and is a common generalization of two formulas that we prove in this paper....
متن کاملOn Combinatorics of Quiver Component Formulas
Buch and Fulton [7] conjectured the nonnegativity of the quiver coefficients appearing in their formula for a quiver variety. Knutson, Miller and Shimozono [21] proved this conjecture as an immediate consequence of their “component formula”. We present an alternative proof of the component formula by substituting combinatorics for Gröbner degeneration [21, 20]. We relate the component formula t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001